[1] NUNNALLY B K, TURULA V E, SITRIN R D. Vaccine analysis:strategies, principles, and control[M]. Berlin Heidelberg:Springer-Verlag, 2015:1-80.
[2] ADA G. Overview of vaccines and vaccination[J]. Mol Biotechnol, 2005, 29(3):255-271.
[3] PLOTKIN S A. Vaccines:the fourth century[J]. Clin Vaccine Immunol, 2009, 16(12):1709-1719.
[4] DE GROOT A S, EINCK L, MOISE L, et al. Making vaccines "on demand":a potential solution for emerging pathogens and biodefense?[J]. Hum Vaccines Immunother, 2013, 9(9):1877-1884.
[5] NGCOBO N J, CAMERON N A. The decision making process on new vaccines introduction in South Africa[J]. Vaccine, 2012, 30(3):C9-C13.
[6] PULENDRAN B, AHMED R. Immunological mechanisms of vaccination[J]. Nat Immunol, 2011, 12(6):509-517.
[7] PETROVSKY N. Editorial (thematic issue:the coming of age of DNA vaccines)[J]. Curr Gene Ther, 2014, 14(3):147-148.
[8] SOUZA A P D, HAUT L, REYES-SANDOVAL A, et al. Recombinant viruses as vaccines against viral diseases[J]. Braz J Med Biol Res, 2005, 38(4):509-522.
[9] PLOTKIN S A, PLOTKIN S L. The development of vaccines:how the past led to the future[J]. Nat Rev Microbiol, 2011, 9(12):889-893.
[10] DUAN Z Q, XU H Q, JI X Q, et al. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases[J]. Future Microbiol, 2015, 10(8):1307-1323.
[11] EWER K J, LAMBE T, ROLLIER C S, et al. Viral vectors as vaccine platforms:from immunogenicity to impact[J]. Curr Opin Immunol, 2016, 41:47-54.
[12] PANICALI D, DAVIS S W, WEINBERG R L, et al. Construction of live vaccines by using genetically engineered poxviruses:biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin[J]. Proc Natl Acad Sci U S A, 1983, 80(17):5364-5368.
[13] WARDEN C, TANG Q Y, ZHU H. Herpesvirus BACs:past, present, and future[J]. J Biomed Biotechnol, 2011, 2011:124595.
[14] KING A M Q, ADAMS M J, CARSTENS E B, et al. Virus taxonomy:ninth report of the international committee on taxonomy of viruses[M]. Oxford:Elsevier, 2012:1221-1234.
[15] LI Y F, HUANG B, MA X L, et al. Molecular characterization of the genome of duck enteritis virus[J]. Virology, 2009, 391(2):151-161.
[16] WU Y, CHENG A C, WANG M S, et al. Complete genomic sequence of Chinese virulent duck enteritis virus[J]. J Virol, 2012, 86(10):5965.
[17] DHAMA K, KUMAR N, SAMINATHAN M, et al. Duck virus enteritis (duck plague)-a comprehensive update[J]. Vet Q, 2017, 37(1):57-80.
[18] WU Y, LI Y G, WANG M S, et al. Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone[J]. Virol J, 2017, 14:78.
[19] WAGNER M, RUZSICS Z, KOSZINOWSKI U H. Herpesvirus genetics has come of age[J]. Trends Microbiol, 2002, 10(7):318-324.
[20] LAI C, FISCHER T, MUNROE E. Homologous recombination using bacterial artificial chromosomes[J]. Cold Spring Harb Protoc, 2015, 2015(2):180-190.
[21] YANG J J, SUN B B, HUANG H, et al. High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage[J]. Appl Environ Microbiol, 2014, 80(13):3826-3834.
[22] TISCHER B K, KAUFER B B. Viral bacterial artificial chromosomes:generation, mutagenesis, and removal of mini-F sequences[J]. J Biomed Biotechnol, 2012, 2012:472537.
[23] LI H X, WANG Y L, HAN Z X, et al. Recombinant duck enteritis viruses expressing major structural proteins of the infectious bronchitis virus provide protection against infectious bronchitis in chickens[J]. Antiviral Res, 2016, 130:19-26.
[24] LIU X M, WEI S S, LIU Y, et al. Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus[J]. Vaccine, 2013, 31(50):5953-5959.
[25] PERELYGINA L, PATRUSHEVA I, VASIREDDI M, et al. B virus (Macacine herpesvirus 1) glycoprotein D is functional but dispensable for virus entry into macaque and human skin cells[J]. J Virol, 2015, 89(10):5515-5524.
[26] SUN Y, YANG C H, LI J P, et al. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks[J]. Arch Virol, 2017, 162(1):171-179.
[27] LIU J X, CHEN P C, JIANG Y P, et al. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks[J]. J Virol, 2011, 85(21):10989-10998.
[28] LIU J X, CHEN P C, JIANG Y P, et al. Recombinant duck enteritis virus works as a single-dose vaccine in broilers providing rapid protection against H5N1 influenza infection[J]. Antiviral Res, 2013, 97(3):329-333.
[29] CHEN P C, LIU J X, JIANG Y P, et al. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck Tembusu virus[J]. Vaccine, 2014, 32(41):5271-5277.
[30] MESSERLE M, CRNKOVIC I, HAMMERSCHMIDT W, et al. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome[J]. Proc Natl Acad Sci U S A, 1997, 94(26):14759-14763.
[31] SHIZUYA H, BIRREN B, KIM U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Proc Natl Acad Sci U S A, 1992, 89(18):8794-8797.
[32] CHEN L, YU B, HUA J G, et al. Construction of a full-length infectious bacterial artificial chromosome clone of duck enteritis virus vaccine strain[J]. Virol J, 2013, 10(1):328.
[33] TISCHER B K, VON EINEM J, KAUFER B, et al. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli[J]. Biotechniques, 2006, 40(2):191-197.
[34] TISCHER B K, SMITH G A, OSTERRIEDER N. En passant mutagenesis:a two step markerless red recombination system[M]//BRAMAN J. In Vitro Mutagenesis Protocols. 3rd ed. Totowa, NJ:Humana Press, 2010:421-430.
[35] LI M Z, ELLEDGE S J. MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules[J]. Nat Genet, 2005, 37(3):311-319.
[36] TOBLER K, FRAEFEL C. Infectious delivery of alphaherpesvirus bacterial artificial chromosomes[M]//NARAYANAN K. Bacterial Artificial Chromosomes. New York, NY:Humana Press, 2015, 217-230.
[37] COPELAND N G, JENKINS N A, COURT D L. Recombineering:a powerful new tool for mouse functional genomics[J]. Nat Rev Genet, 2001, 2(10):769-779.
[38] YU D G, ELLIS H M, LEE E C, et al. An efficient recombination system for chromosome engineering in Escherichia coli[J]. Proc Natl Acad Sci U S A, 2000, 97(11):5978-5983.
[39] DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci U S A, 2000, 97(12):6640-6645.
[40] 刘陆罡, 纪晓俊, 沈梦秋, 等. 大肠杆菌无痕重组的策略与应用[J]. 中国生物工程杂志, 2014, 34(8):88-96.
LIU L G, JI X J, SHEN M Q, et al. Red-mediated scarless recombination:strategies and applications[J]. China Biotechnology, 2014, 34(8):88-96. (in Chinese)
[41] YOON Y G, CHO J H, KIM S C. Cre/loxP-mediated excision and amplification of large segments of the Escherichia coli genome[J]. Genet Anal:Biomol Eng, 1998, 14(3):89-95.
[42] OUEDRAOGO J P, ARENTSHORST M, NIKOLAEV I, et al. I-SceI-mediated double-strand DNA breaks stimulate efficient gene targeting in the industrial fungus Trichoderma reesei[J]. Appl Microbiol Biotechnol, 2015, 99(23):10083-10095.
[43] ARAZOE T, YOUNOMARU T, OHSATO S, et al. Site-specific DNA double-strand break generated by I-SceI endonuclease enhances ectopic homologous recombination in Pyricularia oryzae[J]. FEMS Microbiol Lett, 2014, 352(2):221-229.
[44] TISCHER B K, KAUFER B B, SOMMER M, et al. A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9[J]. J Virol, 2007, 81(23):13200-13208.
[45] WUSSOW F, FICKENSCHER H, TISCHER B K. Red-mediated transposition and final release of the mini-F vector of a cloned infectious herpesvirus genome[J]. PLoS One, 2009, 4(12):e8178.
[46] ROTH S J, HÖPER D, BEER M, et al. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)[J]. Vet Res, 2011, 42:3.
[47] WANG J C, OSTERRIEDER N. Generation of an infectious clone of duck enteritis virus (DEV) and of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus[J]. Virus Res, 2011, 159(1):23-31.
[48] WANG J C, GE A M, XU M W, et al. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens[J]. Virol J, 2015, 12:126.
[49] ZOU Z, HU Y, LIU Z G, et al. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection[J]. Vet Res, 2015, 46:42.
[50] ZOU Z, MA J, HUANG K, et al. Live attenuated vaccine based on duck enteritis virus against duck hepatitis a virus types 1 and 3[J]. Front Microbiol, 2016, 7:1613.
[51] ZOU Z, LIU Z G, JIN M L. Efficient strategy to generate a vectored duck enteritis virus delivering envelope of duck Tembusu virus[J]. Viruses, 2014, 6(6):2428-2443.
[52] EL ZOWALATY M E, BUSTIN S A, HUSSEINY M I, et al. Avian influenza:virology, diagnosis and surveillance[J]. Future Microbiol, 2013, 8(9):1209-1227. |